skip to main content


Search for: All records

Creators/Authors contains: "You, Jie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This article presents an online parameter identification scheme for advection-diffusion processes using data collected by a mobile sensor network. The advection-diffusion equation is incorporated into the information dynamics associated with the trajectories of the mobile sensors. A constrained cooperative Kalman filter is developed to provide estimates of the field values and gradients along the trajectories of the mobile sensors so that the temporal variations in the field values can be estimated. This leads to a co-design scheme for state estimation and parameter identification for advection-diffusion processes that is different from comparable schemes using sensors installed at fixed spatial locations. Using state estimates from the constrained cooperative Kalman filter, a recursive least-square (RLS) algorithm is designed to estimate unknown model parameters of the advection-diffusion processes. Theoretical justifications are provided for the convergence of the proposed cooperative Kalman filter by deriving a set of sufficient conditions regarding the formation shape and the motion of the mobile sensor network. Simulation and experimental results show satisfactory performance and demonstrate the robustness of the algorithm under realistic uncertainties and disturbances. 
    more » « less
  2. null (Ed.)
    How cloud applications should interact with their data remains an active area of research. Over the last decade, many have suggested relying on a key-value (KV) interface to interact with data stored in remote storage servers, while others have vouched for the benefits of using remote procedure call (RPC). Instead of choosing one over the other, in this paper, we observe that an ideal solution must adaptively combine both of them in order to maximize throughput while meeting application latency requirements. To this end, we propose a new system called Kayak that proactively adjusts the rate of requests and the fraction of requests to be executed using RPC or KV, all in a fully decentralized and self-regulated manner. We theoretically prove that Kayak can quickly converge to the optimal parameters. We implement a system prototype of Kayak. Our evaluations show that Kayak achieves sub-second convergence and improves overall throughput by 32.5%-63.4% for compute-intensive workloads and up to 12.2% for non-compute-intensive and transactional workloads over the state-of-the-art. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    SUMMARY In this article, we investigate the problem of parameter identification of spatial–temporal varying processes described by a general nonlinear partial differential equation and validate the feasibility and robustness of the proposed algorithm using a group of coordinated mobile robots equipped with sensors in a realistic diffusion field. Based on the online parameter identification method developed in our previous work using multiple mobile robots, in this article, we first develop a parameterized model that represents the nonlinear spatially distributed field, then develop a parameter identification scheme consisting of a cooperative Kalman filter and recursive least square method. In the experiments, we focus on the diffusion field and consider the realistic scenarios that the diffusion field contains obstacles and hazard zones that the robots should avoid. The identified parameters together with the located source could potentially assist in the reconstruction and monitoring of the field. To validate the proposed methods, we generate a controllable carbon dioxide (CO 2 ) field in our laboratory and build a static CO 2 sensor network to measure and calibrate the field. With the reconstructed realistic diffusion field measured by the sensor network, a multi-robot system is developed to perform the parameter identification in the field. The results of simulations and experiments show satisfactory performance and robustness of the proposed algorithms. 
    more » « less
  5. null (Ed.)
  6. We propose a geometric reinforcement learning algorithm for real-time path planning for mobile sensor networks (MSNs) in the problem of reconstructing a spatial-temporal varying field described by the advection-diffusion partial differential equation. A Luenberger state estimator is provided to reconstruct the concentration field, which uses the collected measurements from a MSN along its trajectory. Since the path of the MSN is critical in reconstructing the field, a novel geometric reinforcement learning (GRL) algorithm is developed for real-time path planning. The basic idea of GRL is to divide the whole area into a series of lattice to employ a specific time-varying reward matrix, which contains the information of the length of the path and the mapping error. Thus, the proposed GRL can balance the performance of the field reconstruction and the efficiency of the path. By updating the reward matrix, the real-time path planning problem can be converted to the shortest path problem in a weighted graph, which can be solved efficiently using dynamic programming. The convergence of calculating the reward matrix is theoretically proven. Simulation results serve to demonstrate the effectiveness and feasibility of the proposed GRL for an MSN. 
    more » « less
  7. We investigate the problem of simultaneous parameter identification and mapping of a spatially distributed field using a mobile sensor network. We first develop a parametrized model that represents the spatially distributed field. Based on the model, a recursive least squares algorithm is developed to achieve online parameter identification. Next, we design a global state observer, which uses the estimated parameters, together with data collected by the mobile sensor network, to real-timely reconstruct the whole spatial-temporal varying field. Since the performance of the parameter identification and map reconstruction algorithms depends on the trajectories of the mobile sensors, we further develop a Lyapunov redesign based online trajectory planning algorithm for the mobile sensor network so that the mobile sensors can use local real-time information to guide them to move along information-rich paths that can improve the performance of the parameter identification and map construction. Lastly, a cooperative filtering scheme is developed to provide the state estimates of the spatially distributed field, which enables the recursive least squares method. To test the proposed algorithms in realistic scenarios, we first build a CO2 diffusion field in a lab and construct a sensor network to measure the field concentration over time. We then validate the algorithms in the reconstructed CO2 field in simulation. Simulation results demonstrate the efficiency of the proposed method. 
    more » « less